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Abstract
Few studies have examined the association between environmental phthalate exposure

and children’s neurocognitive development. This longitudinal study examined cognitive

function in relation to pre-and postnatal phthalate exposure in children 2–12 years old. We

recruited 430 pregnant women in their third trimester in Taichung, Taiwan from 2001–2002.

A total of 110, 79, 76, and 73 children were followed up at ages 2, 5, 8, and 11, respectively.

We evaluated the children’s cognitive function at four different time points using the Bayley

and Wechsler tests for assessing neurocognitive functions and intelligence (IQ). Urine sam-

ples were collected from mothers during pregnancy and from children at each follow-up

visit. They were analyzed for seven metabolite concentrations of widely used phthalate

esters. These esters included monomethyl phthalate, monoethyl phthalate, mono-butyl

phthalate, mono-benzyl phthalate, and three metabolites of di(2-ethylhexyl) phthalate,

namely, mono-2-ethylhexyl phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, and mono

(2-ethyl-5-oxohexyl) phthalate. We constructed a linear mixed model to examine the rela-

tionships between the phthalate metabolite concentrations and the Bayley and IQ scores.

We found significant inverse associations between the children’s levels of urinary mono(2-

ethyl-5-oxohexyl) phthalate and the sum of the three metabolites of di(2-ethylhexyl) phthal-

ate and their IQ scores (β = -1.818; 95% CI: -3.061, -0.574, p = 0.004 for mono(2-ethyl-5-

oxohexyl) phthalate; β = -1.575; 95% CI: -3.037, -0.113, p = 0.035 for the sum of the three

metabolites) after controlling for maternal phthalate levels and potential confounders. We

did not observe significant associations between maternal phthalate exposure and the chil-

dren’s IQ scores. Children’s but not prenatal phthalate exposure was associated with
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decreased cognitive development in the young children. Large-scale prospective cohort

studies are needed to confirm these findings in the future.

Introduction
Phthalate esters are a family of industrial chemicals that are widely used as plasticizers or soft-
eners in a variety of commercial products including food packaging, medical equipment, toys,
furniture, and cosmetics [1]. Phthalates esters are rapidly metabolized to monoesters and are
further oxidized to oxidative metabolites by humans. Urinary phthalate metabolites are broadly
used as biomarkers of phthalate exposure in humans [1,2]. In addition, phthalate esters are
also considered endocrine disruptors that show antiandrogenic, estrogenic, and antithyroid
activities [3].

The developing human brain is uniquely vulnerable to toxic chemical exposures including
endocrine disruptors [4]. The major windows of developmental vulnerability occur in utero,
during infancy, and in early childhood [5]. As a result of the widespread use of phthalate esters
and our subsequent exposure to them, their adverse effects on children’s neurocognitive devel-
opment have become a significant public health concern [6,7]. To date, only a limited number
of epidemiological studies have been published evaluating phthalate exposure and children’s
neurocognitive development. In prospective studies, prenatal phthalate exposures have been
inversely associated with children’s scores on the Bayley scale [8,9]. One cross-sectional study
reported associations between the postnatal phthalate levels of school-age children and their
reduced intelligence quotient (IQ) [10]. Experimental research has shown adverse effects of
exposure to di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) on pup learn-
ing, memory, and healthy brain development [11–13]. Only one study has explored the rela-
tionship between prenatal and postnatal phthalate exposure and children’s cognitive function
using a prospective follow-up approach [14]. For this reason, we conducted a longitudinal
study to evaluate this relationship between prenatal and postnatal exposure to phthalates and
cognitive function in children.

Materials and Methods

Subjects
The subjects were from a longitudinal birth cohort study of environmental exposures and
health in pregnant women and children in central Taiwan, which was a pilot study of the
nationwide Taiwan Maternal and Infant Cohort Study. We invited all pregnant women at a
local medical center in central Taiwan to join the study between December 1, 2000 and
November 30, 2001. The women were between the ages of 25 and 35 years, had a single preg-
nancy and had no known complications, cigarette smoking, or alcohol consumption during
their pregnancies. A total of 430 pregnant women were initially recruited in their third trimes-
ter [15]. Only mothers and their children at 2–3 years of age who finished a neurocognitive
development assessment (n = 110) were included in the present study and followed up during
the study. From the recruited mothers, we followed 110, 79, 76, and 73 children at the ages of
2–3, 5–6, 8–9, and 11–12 years, respectively, from 2003 to 2012. Each mother-child pair partic-
ipated in three follow-up visits on average and at least two visits including the first follow-up.
Thus each child must be studied at both birth and 1st follow-up visit at 2 years of age, and at
least once at 5, 8, or 11 year follow-up. At the baseline, the pregnant women answered detailed
questionnaires in the obstetrics clinic, including their age, parity, education, medical history,
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cigarette smoking, alcohol use before and after pregnancy, and home pesticide use. Physicians
examined the general physical parameters of the newborns, including gestational age, gender,
birth weight and height, head and chest circumferences, and Apgar scores. Every three years,
we collected urine specimens from children, estimated scores for the Home Observation for
Measurement of the Environment Inventory (HOME) [16], and assessed the children’s neuro-
cognitive development.

Ethics Statement
This protocol was approved by the Institutional Review Board of the National Health Research
Institutes in Taiwan. Prior to the study enrollment, written informed consent was obtained
from all participating mothers, who also provided written informed consent on behalf of their
children.

Urinary Phthalate Metabolites
The metabolites of di-methyl phthalate (DMP), di-ethyl phthalate (DEP), di-n-butyl phthalate
(DnBP), butyl benzyl phthalate (BBzP), and di(2-ethylhexyl) phthalate (DEHP) measured in
this study included monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-butyl
phthalate(MBP),mono-benzyl phthalate(MBzP), mono-2-ethylhexyl phthalate (MEHP),
mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate
(MEOHP), and the sum of the DEHP metabolites (SMEHP =MEHP +MEHHP +MEOHP).

Maternal urine was collected from the pregnant women during the third trimester at 28–36
weeks. Phthalate metabolites in the maternal urine were measured at National Cheng Kung
University from 2002–2003 as described elsewhere [17]. The detection limits of MMP, MEP,
MBP, MBzP, MEHP, MEHHP, and MEOHP were 3.4, 2.2, 1.6, 0.99, 0.55, 0.23, and 0.26 ng
mL-1, respectively. Children’s urine samples were measured at the National Health Research
Institute in 2004 and onwards. Additionally, analysis of spot urine samples from children aged
2, 5, 8, and 11 years was done using the method of Koch et al, with modifications [18,19].
Briefly, the urine samples were incubated at 37°C for 15 minutes. Aliquots of 0.1 ml were trans-
ferred to 2.0 ml glass screw-cap vials containing ammonium acetate (20 μl, 1 M, pH 6.5), β-glu-
curonidase (10 μl), and a mixture of isotopic (13C4) phthalate metabolite standards (100 μl). All
urine samples were incubated at 37°C with the enzyme for 1.5 hours to ensure deconjugation.
After hydrolysis, each sample was injected with 270 μl of solvent (5% acetonitrile [ACN]
+ 0.1% formic acid [FA]) into the glass screw-cap vial and mixed well. The analysis was per-
formed using a quantitative liquid chromatography/electrospray ionization tandem mass spec-
trometry (LC–ESI-MS/MS) system. The detection limits of MMP, MEP, MBP, MBzP, MEHP,
MEHHP, and MEOHP were 0.3, 0.3, 1, 0.3, 0.7, 0.1, and 0.1 ng mL-1, respectively. Each sub-
ject’s urinary phthalate metabolite concentrations were corrected according to urine creatinine
levels. Values below the limit of detection (LOD) were set to LOD/2. The percent of urinary
phthalate metabolites above the LOD for pregnant women ranged from 84% to 100%. For the
children’s urinary samples, the percent of phthalate metabolites above the LOD at 2–3, 5–6,
8–9, and 11–12 years were 90%–100%, 95%–100%, 99%–100%, and 81%–100%, respectively
(S1 Table).

Assessment of Neurocognitive Development
All of the intellectual evaluations were administered to the children using a standardized proto-
col by qualified psychologists or well-trained researchers with sufficient validation. At ages 2, 5,
8, and 11 years, the children’s intelligence was assessed using the Bayley Scales of Infant Devel-
opment-II (BSID-II) [20], the Wechsler Preschool and Primary Scale of Intelligence-Revised
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(WPPSI-R) [21], the Wechsler Intelligence Scale for Children-Version III (WISC-III) [22], and
the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) [23], respectively. The
measurement procedure is described in detail in a previous study [24]. In brief, we adminis-
tered the BSID-II, which is the most widely used measure of infant neurocognitive develop-
ment. The Mental Development Index (MDI) of the BSID-II is statistically analogous to an IQ
score. It includes measurements of acquisition of object constancy, memory learning and prob-
lem solving, sensory/perceptual activity, discrimination and response, vocalization and begin-
ning of verbal communication, basis of abstract thinking, complex language, habituation,
mental mapping, and mathematical concept formation. We used the Chinese version of
WPPSI-R, validated by Chinese standardization and norms in Taiwan [25]. The WPPSI-R has
five subsets of verbal skills (arithmetic, comprehension, information, similarities, and vocabu-
lary) and five subsets of visual-spatial skill (block design, geometric design, mazes, object
assembly, and picture completion). Additionally, it generates a full-scale IQ. Similarly, the
WISC-III also has five subsets of verbal skill, five subsets of performance, and provides a full-
scale IQ. TheWISC-IV has four different components including four subsets of verbal compre-
hension index (similarities, vocabulary, comprehension, and information), four subsets of per-
ceptual reasoning index (block design, picture concepts, matrix reasoning, and picture
completion), three subsets of working memory index (digit span, letter-number sequence, and
arithmetic), and three subsets of processing speed index (coding, symbol search, and cancella-
tion). The WISC-IV also provides a full-scale IQ. A total of 10 certified psychologists who were
unaware of the results of the phthalate measurements administered all tests. One senior psy-
chologist trained all testers, randomly reviewed selected forms of each assessment procedure,
and checked all completed evaluation forms. Only those validated test scores were included in
the final analysis.

Questionnaire and Covariates
We collected information about the children’s gender, birth weight, children’s age, breastfeed-
ing status, gestational age, and children’s BMI. Additionally, other factors that might confound
the relationship between the prenatal and postnatal phthalate exposure and the childrenʼs cog-
nitive development during the study interview were collected. At the baseline, the administered
questionnaire was used to obtain demographic data on the pregnant women. These data
included maternal age, maternal educational level, parity, cigarette smoking, alcohol use before
and after pregnancy, and home pesticide use. A parent also completed the Home Observation
for Measurement of the Environment Inventory (HOME) [16] at the four different time points
in the clinic. We used the HOME score to evaluate the quality and quantity of cognitive and
emotional stimulation in the home environment for each child. The Chinese version of the
HOME presented moderate to good reliability in Taiwan [26,27]. To select covariates for inclu-
sion in the multivariate models, the key covariates based on the literature [8,10,24] and
Akaike’s Information Criterion (AIC) and log-likelihood ratio test were selected. The covari-
ates included the children’s gender, age, HOME score, birth weight, maternal education, and
lactation.

Statistical Analysis
We used Student t-tests for examining the continuous variables while the χ2 test was used for
the categorical variables. Because the distributions of urinary phthalates were skewed in the
samples, we used natural log-transformed values (ln) in the analysis. The associations between
the prenatal and postnatal urinary phthalate concentrations and the full-scale IQ scores were
assessed using a mixed-model repeat measures analysis after adjusting for fixed covariates
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(such as age, gender, HOME score, birth weight, maternal education, and lactation). These
models treated the participants as random effects, and the first-order autoregressive (AR-1)
and variance components were constructed as covariance structures. We also utilized the quar-
tile of urinary phthalate among all the participants to test the non-linear relationship between
phthalate exposure and the IQ scores in the same models. Residual and influence analyses were
conducted. In addition, we explored the relations between phthalate exposure and the IQ
scores in the same models stratified by gender; the interaction effects of gender and phthalate
metabolites on IQ scores were not significant (data not shown). A two-sided P-value of less
than 0.05 was considered statistically significant. All statistical analyses were performed using
SAS (version 9.1.3; SAS Institute Inc., Cary, NC).

Results

Characteristics of subjects
There were no differences in maternal age, BMI, menarche, maternal educational level, pater-
nal educational level, or birth weight between the participants and participants lost to follow-
up, except that the gestational age was slightly older among the study participants (Table 1).
The distributions of other variables, including the children’ gender, parity, maternal active/pas-
sive cigarette smoke exposure, alcohol intake, and pesticide use at home did not differ between
the study subjects and those lost to follow-up.

We found that the concentrations of phthalate metabolites in children, including MMP,
MEP, MBP, MBzP, MEHP, MEHHP, MEOHP, and SMEHP, were significantly related to age
(Table 2). Levels of urinary phthalate metabolites in the children at 2 years old were higher
than that of children at 11 years old. Generally, the levels of MMP, MEP, MBP, and SMEHP
metabolites decreased as the children’s ages increased. For the trend of MBzP, the levels
increase from 2–3 years to 5–6 years and then decrease from 5–6 years to 11–12 years. Further-
more, no significant correlations between the same phthalate metabolite at different ages were
found, except for MBP at ages 2–3 and 5–6, SMEHP at ages 2–3 and 8–9, and SMEHP at ages
8–9 and 11–12, which were significantly correlated (S2 Table).

Relationship between phthalate metabolites and IQ
Table 3 presented the association between IQ score and maternal and children’s urinary
phthalate metabolite levels using a linear mixed model adjusted for age, gender, HOME score,
birth weight, lactation, and maternal education. No maternal phthalate metabolite levels were
significantly associated with the children’s IQ scores. MEOHP and SMEHP were significantly
inversely associated with IQ scores (MEOHP, β = -1.818, 95% CI: -3.061, -0.574, p = 0.004;
SMEHP, β = -1.575, 95% CI: -3.037, -0.113, p = 0.035). A one-fold incremental increase in the
MEOHP and SMEHP altered the IQ scores by -1.26 and -1.09, respectively. The children’s
other phthalate metabolites, including MMP, MEP, MBP, MBzP, MEHP, and MEHHP, were
inversely associated with the IQ scores but were not statistically significant. We also examined
the effects of prenatal and postnatal exposure to phthalate metabolites on IQ scores at different
ages among the children (S3 Table), and the results were consistent with those in Table 3.
Additionally, our findings shown in Table 3 were similar to those with adjustment for creati-
nine levels as the covariates in the regression model (S4 Table).

To test the nonlinear relationship between phthalate metabolites and the IQ scores, we plot-
ted the IQ scores by the quartiles of urinary phthalate metabolite levels in the children. Mean
IQ scores were 5.69 points lower (95% CI: -9.52, -1.87) and 3.69 points lower (95% CI: -7.06,
-0.32) in the fourth and second quartiles for MEOHP compared to the first quartile, respec-
tively (Fig 1). Similar results were observed including MBP, MEHHP, and SMEHP (S1 Fig).
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Discussion
The objective of our study was to examine the associations between prenatal and postnatal
phthalate exposure and neurocognitive development among children. We found an inverse
relationship between postnatal exposure to MEOHP and SMEHP and the children’s IQ scores
after adjustment for covariates. Our results indicated that long-term and persistent exposure to
phthalates caused adverse effects on cognitive development in children. Consistent with our
study, another showed inverse associations between postnatal exposure to MEHP, MEOHP,
and the sum of secondary metabolites for DEHP and the IQ scores among school-age children
in a cross-sectional study [10]. The estimated effect sizes (β = -2.2, 95% CI: -3.6,-0.8 for

Table 1. Demographic characteristics of the study population.

Study subjects (n = 110) Subjects lost to follow-up (n = 320) b P-valuea

Continuous variables Mean SD n Mean SD n

Maternal age (yr) 29.23 3.99 110 28.56 4.55 285 0.172

Maternal BMI (kg/m2) 20.92 3.13 108 20.76 3.16 278 0.646

Menarche (yr) 13.56 1.33 108 13.69 1.32 279 0.364

Birth weight (g) 3170.23 416.45 107 3060.95 483.39 260 0.041

Gestational age (wk) 39.30 1.33 110 38.84 1.71 254 0.014

Maternal educational level (yr) 13.78 1.91 109 13.47 2.17 295 0.187

Paternal educational level (yr) 13.93 2.42 109 13.62 2.34 285 0.815

Categorical variables n % n %

Gender 1.000

Male 58 52.7 124 47.1

Female 52 42.3 139 52.9

Before pregnancy: Active smoker 0.765

Yes 7 6.5 23 8.0

No 101 93.5 264 92.0

Before pregnancy: Passive smoke 0.677

Yes 47 43.5 133 46.5

No 61 56.5 153 53.5

During pregnancy: Active smoker 0.453

Yes 1 0.9 7 2.4

No 109 99.1 279 97.6

Alcohol consumption 0.529

Yes 2 1.8 11 3.8

No 108 98.2 275 96.2

Pesticide use at home 0.669

Yes 33 30.0 192 67.1

No 77 70.0 94 32.9

Parity 0.101

1st 109 99.1 185 95.4

2nd 1 0.9 9 4.6

Lactation 0.548

Yes 96 92.3 232 89.6

No 8 7.7 27 10.4

aStatistical methods: Independent t-test and χ2 test, as appropriate.
b A total of 320 subjects with complete data at baseline were lost to follow-up.

doi:10.1371/journal.pone.0131910.t001
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MEOHP) reported by the previous study [10] were similar to those (β = -1.7, 95% CI: -3.0, -0.5
for MEOHP) of our model without adjusting for maternal phthalate metabolite levels. In terms
of prenatal phthalate exposure, no significant associations between maternal urinary phthalate
metabolites and the children’s IQ scores were observed in our study. Similarly, two other stud-
ies also found that maternal urinary DEHP metabolites were not associated with children’s
Mental Development Index scores at 2–3 years of age [9,28]. However, another study in Korea
found that prenatal exposure to DEHP metabolites was negatively associated with the Mental
Development Index scores of infants at 6 months [8]. The inconsistency with other studies
[8,14] could be due to the differences in the children’s age, exposure profiles, sample size, eth-
nic and social groups, and adjusted covariates.

The mechanism underlying the adverse effects of phthalates on neurocognitive development
is uncertain. Cognitive function is associated with the regulation of the neurotransmitter sys-
tem. Low-dose phthalates may decrease the number of midbrain dopaminergic neurons, tyro-
sine hydroxylase biosynthetic activity [13], and tyrosine hydroxylase immunoreactivity [29]. In
addition, several studies have reported the possible antagonistic effects of phthalates on thyroid

Table 2. Concentrations (geometric mean, GM) of maternal and childrenʼs urinary phthalates (μg/g creatinine), HOME scores, and intelligence quo-
tients (IQs) at the four follow-up points.

Pregnant women 1st visit (2–3 years) 2nd visit (5–6 years) 3rd visit (8–9 years) 4th visit (11–12
years)

P for
trendb

Variables GM(95% CI) na GM(95% CI) n GM(95% CI) n GM(95% CI) n GM(95% CI) n

MMP 49.84
(40.92,
60.71)

100 14.58(12.16,
17.49)

93 12.34(9.73, 15.64) 74 6.64(5.19, 8.50) 75 8.60(6.12,
12.09)

73 <0.001

MEP 66.61
(55.73,
79.61)

100 34.35(26.78,
44.06)

93 16.18(12.82,
20.43)

74 13.67(10.75,
17.40)

75 7.63(4.99,
11.67)

73 <0.001

MBP 77.87
(64.84,
93.52)

100 170.12(145.19,
199.33)

93 111.65(96.50,
129.18)

74 83.68(69.70,
100.48)

75 74.86(65.64,
85.37)

73 <0.001

MBzP 17.43
(15.15,
20.05)

100 7.45(5.90, 9.42) 93 14.82(12.10,
18.16)

74 10.16(8.00,
12.91)

75 3.21(2.50, 4.10) 73 <0.001

MEHP 19.79
(16.38,
23.92)

100 16.26(13.67,
19.35)

93 13.31(10.30,
17.20)

74 8.34(6.28, 11.07) 75 10.07(8.14,
12.44)

73 <0.001

MEHHP 8.49(5.97,
12.09)

100 93.38(78.78,
110.68)

93 91.30(72.43,
115.08)

74 42.10(33.56,
52.80)

75 33.16(28.98,
37.95)

73 <0.001

MEOHP 12.97(9.23,
18.21)

100 65.83(54.68,
79.26)

93 52.51(43.14,
63.93)

74 37.07(29.69,
46.28)

75 24.29(19.38,
30.44)

73 <0.001

ΣMEHPc 58.69
(48.32,
71.30)

100 184.55(158.14,
215.37)

93 167.61(136.77,
205.39)

74 89.46(71.38,
112.12)

75 72.11(63.08,
82.44)

73 <0.001

HOME score
(mean ± SD)

- - 40.30 ± 4.01 107 45.59 ± 5.10 79 46.01 ± 6.13 75 44.88 ± 8.23 69 <0.001

IQd (mean ± SD) - - 95.37 ± 12.41 110 105.93 ± 13.66 76 109.41 ± 11.76 76 109.15 ± 13.21 72 <0.001

aTen pregnant women could not provide sufficient urine samples; the total numbers of pregnant women were 100 subjects.
bMixed model was used to test for age trend of childrenʼs urinary phthalate levels, HOME score, and IQ.
cΣMEHP = MEHP + MEHHP + MEOHP.
dIQ: The mental development index scores of the Bayley Scales were used to assess the IQ of children aged 2–3 years. The Wechsler Scales were to

evaluate the IQ of children aged 5–12 years.

doi:10.1371/journal.pone.0131910.t002
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function in both in vitro and in vivo studies [30,31]. Thyroid hormones play a fundamental
role in neurocognitive development and hippocampal function; delayed, or impaired brain dif-
ferentiation, and hippocampal dysfunction often lead to deficits in learning and memory in
rats [32,33]. Exposure to phthalates may be associated with altered thyroid activity in both
pregnant women [34] and children [35]. Previous studies have reported that neonatal hypothy-
roidism and subclinical hypothyroidism could affect children’s cognition [36–38].

An alternative biological explanation is that phthalates activate the peroxisome proliferator-
activated receptors (PPARs) [39]. These receptors are found in developing neural tubes [40].
Some studies have observed that ligands of PPAR played roles in lipid metabolism, cellular pro-
liferation, and the inflammatory response [41]. Its signal transduction pathway is involved in
the progression of neurodegenerative and psychiatric diseases and its relation to cognitive
function [42].

We also found that phthalate metabolite concentrations were inversely associated with age,
which is in agreement with previous studies [43,44]. The children showed higher urinary

Table 3. Associations of intelligence quotient (IQ) scores with mothers’ and childrenʼs urinary phthal-
ate concentrations by linear mixedmodel (na = 251).

Phthalate metabolite (μg/g creatinine) Beta IQ 95% CI P-value

Model 1b,c

Ln child MMP -1.043 -2.164, 0.076 0.068

Ln maternal MMP -0.255 -2.418, 1.909 0.817

Model 2b,c

Ln child MEP -0.579 -1.515, 0.356 0.224

Ln maternal MEP 1.593 -0.695, 3.881 0.171

Model 3b,c

Ln child MBP -1.684 -3.496, 0.128 0.068

Ln maternal MBP -0.215 -2.496, 2.067 0.853

Model 4b,c

Ln child MBzP -0.934 -2.118, 0.250 0.121

Ln maternal MBzP -0.056 -3.097, 2.985 0.971

Model 5b,c

Ln child MEHP -1.026 -2.184, 0.133 0.082

Ln maternal MEHP -1.069 -3.259, 1.122 0.337

Model 6b,c

Ln child MEHHP -1.216 -2.601, 0.170 0.085

Ln maternal MEHHP -0.289 -1.459, 0.882 0.627

Model 7b,c

Ln child MEOHP -1.818 -3.061, -0.574 0.004

Ln maternal MEOHP 0.264 -0.928, 1.457 0.662

Model 8b,c

Ln child ΣMEHPd -1.575 -3.037, -0.113 0.035

Ln maternal ΣMEHPd -0.119 -2.197, 1.959 0.910

aThe number of observations (n) represents the sum of all subjects studied at both birth and 1st follow-up

visit at 2 years of age, and at least once at 5, 8, or 11 year follow-up.
bAdjusted for gender, HOME score, birth weight, maternal education, lactation, and children’s age.
cMaternal and children’s levels of urinary phthalate were both independent variables to predict IQ scores in

the model.
dΣMEHP = MEHP + MEHHP + MEOHP.

doi:10.1371/journal.pone.0131910.t003
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phthalate metabolite concentrations than adults [43]. In addition, our data showed negative
associations between children’s phthalate metabolites levels and IQ scores at different ages.
These results support an assumption that early life phthalate exposure plays a significant role
in children’s cognitive development.

With regard to long-term trend in phthalate exposures, the levels of MBP, MBzP,
andSMEHP metabolites in children’s urine from the study by Langer et al. [43] have shown
decreasing trends, which were in agreement with our findings. However, MEP levels remained
about the same during the last decade in this Danish study, which was different from our find-
ings. As a whole, our subjects had higher levels of MMP, MBP, andSMEHP metabolites com-
pared to children in the United States and Germany [43–45]. In contrast, levels of MEP and
MBzP were much lower than in children in the United States and Germany. Levels of exposure
in pregnancy in our study compared with previous studies [45,46] showed analogous findings.
Because MBzP levels in the children in the present study were close to levels measured in a pre-
vious Taiwanese study [47], we suggest BBzP levels in Taiwan are consistently lower. A differ-
ent lifestyle, dietary habits, different exposure routes, durations, concentrations, and different
rate of metabolism may explain these inconsistencies [48,49].

There are some limitations to this study. First, we found significant inverse associations
between postnatal MEOHP exposure and IQ scores in boys; however, the sample size was
insufficient to detect the statistical significance in relation to the interaction effects of gender
and phthalate metabolites on IQ scores. Previous studies have shown no consistent or apparent
gender differences regarding phthalate exposure and neurocognitive development [9,28]. Sec-
ond, spot urine was only collected from the pregnant women in the third trimester. Because of
the short half-lives of phthalates and the episodic nature of exposure, single spot urine mea-
surements might not reflect long-term exposure among pregnant women. However, previous
studies have reported that phthalates detected in spot urine samples from pregnant women in
the third trimester indicated moderate reliability for the presence of phthalates for a period
ranging from weeks to months [8,50–52]. Third, we did not collect maternal IQ data at the

Fig 1. Adjusted regression coefficients (β [95% CI]) for change in children’s cognitive development
assessed by Bayley andWechsler IQ scores in relation to 2, 5, 8, 11 year old children’s urinary
MEOHP quartile. Values were calculated using a linear mixed model adjusting for age, gender, HOME
score, birth weight, maternal education, lactation, and maternal phthalate metabolite levels.

doi:10.1371/journal.pone.0131910.g001
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recruitment time for consideration of adjustment. Considering maternal IQ as confounding
variable in the case of lead toxicity, we might want to adjust for maternal IQ in future studies
[53]. However, adjusting for a confounder that has a stronger effect than the variable of interest
can result in underestimating the actual effect of the variable. In addition, we obtained infor-
mation on the potential covariates related to maternal IQ, including socioeconomic status and
the HOME score. Consequently, our results could indicate minimal effects from the maternal
IQ.

Conclusions
Higher postnatal urinary phthalate metabolite levels were associated with lower IQ scores in
children 2–12 years of age, suggesting that continuing exposure to environmental phthalates
could adversely affect children’s cognitive development. However, fetal exposure to phthalate
was not significantly and independently associated with decrements in IQ scores. Large-scale
prospective cohort studies are needed to confirm these findings in the future.
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